
Page 1 of 28

Coropata English translation for Nintendo DS
Translation/localization

theory, modification techniques
 and team management

Kendall Price

2023

Page 2 of 28

Introduction

This document exists to provide a detailed breakdown of the translation
process for the Coropata (Nintendo DS) English patch by Demon Network.

I will outline and explain the tools/programs used, the way in which we dealt
with various types of images/text in the game, and the reasoning for
decisions made related to the localization.

I hope this document serves as a combination of a how-to guide for aspiring
ROMhackers/translators/localizers, but also as a showcase on what we at
Demon Network have achieved as a freshly formed translation group.
Hopefully it will also serve as a personal portfolio for myself going forward.

I will be posting this document publicly to my website (kendalls.garden), but
Demon Network does have its own website that I encourage you to check out
yourself! (demonnetwork.co.uk).

I’d also like to make sure that anyone reading knows that we as a translation
group understand that Coropata as a copyright and an IP is fully owned by
Lukplus.,LTD. We don’t intend to ever distribute any copyrighted materials
and will only ever distribute patch files that can be used on an original and
legal copy of the game. All of our hard work has been done out of passion for
the game, video-game preservation, and a dedication to bringing lesser-
known Japanese titles to an English-speaking audience.

Page 3 of 28

Table of Contents

1. Picking a Game – Why Coropata? ... 4

2. Re: The Steam Release .. 5

3. Demon Network ... 7

4. What is Coropata? ... 8

5. Tools, Sites and their Uses .. 9

5.1 CrystalTile2 .. 9

5.2 Tahaxan ... 10

5.3 wxMEdit ... 11

5.4 MelonDS ... 13

5.5 Notepad++ ... 14

5.6 xDelta ... 15

5.7 GitHub ... 16

5.8 Google Sheets .. 17

6. Translating the Game .. 18

6.1 Text Access ... 18

6.2 Image Access ... 19

6.3 Arm9.Bin .. 20

6.4 Cutscenes .. 21

6.5 Levels, Items and Descriptions 24

7. Stylistic Choices .. 26

7.1 Honorifics/Name Nomenclature 26

7.2 Oscar/Geotail ... 26

7.3 Geotail’s Speech .. 27

7.4 Hinotori .. 27

8. Post Translation .. 28

8.1 Reflection ... 28

Page 4 of 28

Picking a Game – Why Coropata?

When picking a game for translation, speaking exclusively from the
perspective of a fan project that expects no compensation, there’s a few
different factors that determine whether or not a game gets picked. For a lot
of translators or manga scanlators, the decision to start a project is based on
a passion for the source material; perhaps this is something the translators
have wanted to see in their target language for a long time, or it is something
that is highly requested by a community of similar people.

For us, Coropata was, on the surface, an extremely cute and entertaining
game that caught our attention, but outside of its immediate appeal there
were many things that made it the ideal choice for a translation team of our
calibre.

Firstly, the game being on DS meant that we’d
have years of well documented and
developed PC programs that allow us to
extract, edit and inject all the assets we
would need very easily. Nested in that is the
way that the Japanese text, when viewed in a
hex editor, wasn’t compressed or encoded in
any confusing algorithm, and was able to be
manually edited (with some care) after the
text was ready for re-injection.

Previously we had floated the idea of translating PC-98 games, specifically a
game titled “Doki Doki Pretty League”; A large part of this game was
accessible to us, but due to the extremely proprietary nature of a lot of PC-98
file types (For example, images being in a “.LOG” format that no
decompression algorithm available to us would be able to decipher), it was
very difficult if not impossible to translate without a skill in reverse
engineering that was frankly very far removed from our level of expertise.

There’s also the issue that the hardware
required to see these patches in action would
be relatively hard to come by, compared to
the ease of accessing any of the Nintendo DS
line in 2023. On top of this, the PC-98, outside
of being rare and ancient, was only available
in Japan, as opposed to the global success of
the DS.

Page 5 of 28

Re: The Steam Release

Before embarking on a translation we, as a team, have to research the
source material and see if there are any previous attempts to the translate
the game, successful or not. Of course, most of the time, if a successful
English translation already exists then there is no need for us to interfere and
waste time creating our own.

There is however, an official English translation released alongside the
PC/Steam version of the game, but for two reasons I felt it was still necessary
that we create our own patch. The first is that, simply put, I felt the official
translation was not of a high enough quality; I felt we could do better. To
demonstrate this, I’ll use a specific example that first tipped me off that there
was some improvement to be made on the official translation, and that was
as follows:

Compare the above two screenshots, the left from the official PC release and
the right from the original Japanese version. Both of these feature the
“Kigen” and “Tairyoku” meters, which are status indicators during the
gameplay. The problem is that both of these are the same, where they should
be translated in the English version to “mood” and “energy” respectfully.

These kinds of issues, where it is assumed the English player base will
inherently understand these romanized Japanese words, is among a litany of
issues that made us feel confident in starting our own localization. Outside of
this, much of the translation feels rather direct and unnatural, as if it was
either done by a machine translation platform, or someone who had little
experience with the way people actually speak and use English in real life.

Page 6 of 28

The other reason is that there is simply a novelty in having the
translation/patch be available for the original hardware; yes, you can play
this game on a PC now, but is it the original experience that the developers
intended? A player might not personally care about the way they experience
the game, but having it be an option is a something we wanted to fulfil.

Coropata is first and foremost, a DS game, a platform which was fully
portable and used the touch stylus to its’ advantage. Something about having
it played on what is essentially a glorified emulator on PC feels inauthentic,
and those who want to play it in its original form that do not understand
Japanese, needed our help.

Page 7 of 28

Demon Network

“Demon Network” is the name of my translation team/group, newly formed to
tackle the translation of Coropata, making this our first project. I had
personally worked as part of a team translation team before, but wanted to
work with close friends I have that share a similar interest in the types of
sources I wanted to take a stab at. We are a small, close-knit group that
enjoys Japanese language content and want to bring it to a wider audience
by making it available in English.

My goal with Demon Network was paradoxically opposite to the reasons why
a lot of English patches are even produced in the first place; usually it’s a
result of high demand, but taking a look at Coropata and other games we
either looked at or have lined up in the future, this doesn’t seem to be the
case.

For us, the obscurity of the game makes it desirable to be translated. It’s all
well and good that a game like “Mother 3” was given an in-depth and
passionately crafted translation, but that was inevitable given the cult status
of the earthbound/mother series. Games like Coropata might have be left
without the proper attention indefinitely if we don’t dig it up from the
trenches of time.

Our team consists of 3
translators, an artist/image
editor and a member
familiar with
ROMhacking/programming;
we have our own personal
website at
https://demonnetwork.co.uk

Page 8 of 28

What is Coropata?

Perhaps a little bit of context as to what the game actually is would help for
unfamiliar readers.

Coropata is a Japanese puzzle game that was developed and published by
“LukPlus” in 2009 for the Nintendo DS. It functions as a “Rube Goldberg”
style of puzzle, where items are placed that interact with each other in a long
series of events in order to create a finalized result. This kind of thing is
easier to show visually than to write about, so I’ll use these images from
LukPlus’ official Coropata website to illustrate.

Each stage presents you with an objective, for
example “Get Himawari over to Momo (her
friend)”. When the play button is pressed, a
“simulation” of sorts begins, and Himawari will
typically start moving forward in the direction she
starts facing. The player needs to place objects in
various locations to make sure that Himawari
safely achieves her objective; this simple premise
increases in difficulty over the course of the story,
covering 6 chapters with their own unique
storylines and cutscenes.

The aforementioned “Kigen”/”Tairyoku”, aka
“Mood” and “energy” must be paid attention
to, as Himawari’s behaviour can radically
shift based on how tired or happy she is, to
the point of giving up and resorting to sitting
down and crying.

Page 9 of 28

Tools, Sites and Their Uses

In this section I will give an overview of each of the tools and websites that
were used in the translation, editing and management of the game; some of
these had much more use than others but each had unique and useful
reasons to be included in the program arsenal.

CrystalTile2
CrystalTile2 is a multifunction editor/extractor that works for the .nds format
that DS games are packaged inside.

When we open Coropata in this program, we have immediate access to all
the relative .bin files that run the game, the level .dat files and the script .dat
files, as well as tilesets, colour palettes and music files. We can use
crystaltile for essentially any form of file dumping or reinjecting that we
please, with the added benefit of being able to view tilesets graphically.

Script .dat files that are extracted with crystaltile can be edited in a hex
editor of your choice, then reimported into the file system and saved as
an .nds file.

Page 10 of 28

Tahaxan
While functionally similar in a lot of ways to CrystalTile, and also being
superseded by it, Tahaxan came in useful at the start of the translation
process when we were just trying to see what types of things were hidden
inside the .nds wrapper.

This program lets you view tilesets as full images, explore folders and extract
a full clean rip of the contents of your DS game

Page 11 of 28

wxMEdit
This serves as the main hex editor for the entirety of the translation. Opening
the previously extracted script .dat files in this editor and changing the
encoding to Shift-JIS allows us to view the cutscenes as hex, which I can
then extract and save into a separate text document for ease of distribution
with other members of the team.

After the text has been translated I can save these script files and also
arm9.bin (which I will talk about in more length later), then using the
aforementioned crystaltile2 I can reinject them into the game.

Using the buttons at the top right we can switch between hex mode and
script mode; the difference not only being organization on the screen but
also how deleting and adding text works in context. When in hex mode, you
interact directly with the hex, which is useful for inputting certain hex codes
like “0A”, which indicates in a cutscene to create a line break for a box of
dialogue.

When in script mode, deleting or lengthening text becomes easier (for
cutscenes at least, this shouldn’t be attempted when editing arm9.bin since
it will crash on startup), and text starts to follow a more traditional display
style.

Page 12 of 28

Regardless of if we’re editing arm9.bin or a normal cutscene with more
leverage for file size and how we mess around with it, it is always important
to be careful of non-text elements that surround the game’s script

As seen in the screenshot, many coding elements will present themselves
through hex as Unicode square characters or blue lines, and as long as we
don’t accidentally break the order or remove anything that isn’t text, the
game should function as normal.

(The example above shows script037.dat, the nomenclature indicating to us
that the script is a cutscene from chapter 3, scene 7)

Page 13 of 28

MelonDS

MelonDS is a well optimized DS emulator that allows us to run the DS version
of Coropata on PC hardware. Using this, the ability to quickly refresh the
game to see new changes, speed up the game, pause and dump memory,
becomes invaluable in the modification and debugging of the game.

Every time that the emulator saves the game, we can repurpose the save file
as a checkpoint for various stages and cutscenes. Using GitHub uploads
(which will be mentioned later), save files are distributed among translators
which gives us easy access to any piece of dialogue without requiring
everyone to complete their own copy of the game.

Of course, it does require one person to achieve this task, so I have
personally played through and created save files for each important part of
the game in order to streamline the process for other people working on the
project.

Savefile names correlate to a scene in the game, with the first number
referring to the chapter, and the second the particular scene.

Page 14 of 28

Notepad++

Notepad++ is, as the name suggests, an upgrade and extension on the
classic notepad program, usually used for its ability to deal with
programming script of various types. Typically, this lies in colour coding
elements of text to make the reading and organization of code simple.

For purposes of the translation, however, the most important function is
actually the column count at the bottom of the screen, which shows your
cursors position on the line of text. This is extremely useful when met with
restrictions on the length of single strings of text, as we often see in
Coropata.

For most of the cutscenes, dialogue in speech bubbles should be kept to no
longer than around 25/26 characters per line, ideally short (for aesthetic
purposes). For level and item descriptions, a hard limit of 30 characters
exists before text is cut off the screen; This is due to the characters not
exhibiting any form of word wrap as they do in the dialogue boxes.

Page 15 of 28

xDelta

xDelta is a popular patcher tool that we can use to create our patch for
distribution.

Of course, distributing a Nintendo DS game, translated/modified or not,
would be illegal and as a group we do not condone piracy at all.

Using a patcher such as xDelta allows us to take the source .nds file and
create a patch, which is simply all the differences in code between the
original file and the fully translated version. This patch can then be
distributed, applied to the retail copy of someone’s game, and played without
any illegal distribution of files.

Page 16 of 28

GitHub

GitHub is a well-known and popular website that allows developers and
programmers to create repositories for their code, and designate
“collaborators” who can download from and “push” files to that repository.

Using GitHub, I can distribute all of the necessary files for the translation to
other members of the group. When other translators have completed a
scene/piece of dialogue, they can upload the file to a section of the GitHub
repo labelled “ENGSCRIPT”. From here I can download their edited files and
reinject them into the game.

This is also where any new save/script files will be uploaded as I create them,
as well as any new builds of the game that would be convenient for others to
have access to.

Page 17 of 28

Google Sheets

For any project of this scope, organization is key; Using google sheets (a free
alternative to Excel), every bit of progress we make can be tracked, and
sections of the game can be marked as either “IN PROGRESS”, “DRAFT
COMPLETE” or “COMPLETED” to indicate their status, and make sure people
aren’t working on the same scene at the same time.

The “DRAFT COMPLETE” stage indicates that something has been
translated, but before we have had a chance to look over the text, workshop
any changes and then place into the game. Once a piece of text has been
checked and injected into the ROM, the status is changed to “COMPLETED”.

As seen in the image, a section was used to keep track of cutscene progress,
and a separate area was used for the progress of the arm9.bin file, since it
contained all the level and item data and thus was exceedingly large.

Functions in sheets/excel also allowed us to calculate real time percentages
of our progress, and create bar graphs which give us a visual representation
of our efforts.

Page 18 of 28

Translating The Game

As I have mentioned before, viability is the name of the game when it comes
to translation in a personal project capacity. All of the elements that need to
be changed into English must also be available for us to edit and modify
without any coding or major changes to the game outside of our scope of
knowledge.

In this section I will describe the process of translating the game, which
involves checking all assets are accessible to us, extracting the text,
translating/localizing to English and then reinjecting into the ROM.

Text Access

At first, access to the game’s text seemed trivially easy; I could simply load
up any of the “ScriptXXX.Dat” files into wxMEdit, change the encoding to
SHIFT-JIS, and full strings of uncompressed Japanese text would be shown
to me.

Of course, there is a large amount of hex that points to programming for the
game, which we can use to learn how certain functions are called within the
hex editor (e.g. line breaks, special characters etc.)

Page 19 of 28

Image Access

Using crystaltile, access to images is fairly simple. With the Nintendo DS,
much like previous Nintendo handhelds, images are actually stored as
“Tiles” or “Tilesets” rather than just some kind of compressed image; This
allows the DS to store its graphics in a very low file-size manner, but means
that each image is actually a split of 3 different files

These are: A palette file, which tells the game which colour set (AKA the
palette) to change to, a tileset file, which is a collection of possible tiles for
that palette, and then for individual images a file which arranges the tiles in
specific ways to create a final image. For those unfamiliar with this
technique, it’s probably better to show this visually than try to describe it
through text.

Above is the tileset “BgMain_dm100.NCGR”, this shows tiles for every single
chapter intro screen in the game; Whenever a new chapter is started, tiles
will be taken from this image, using the currently selected palette
“BgMain_dm100.NCLR”, and reconstructed into the final image.

The useful thing about crystaltile is that it allows us to copy the bitmap of this
tileset or a finished image, then paste that into a preferred image editor and
directly manipulate the pixels, before letting us copy it back into crystaltile
and save into the ROM. This makes editing images trivial, but I would
recommend only editing tilesets directly; Editing of finalized images often
creates errors as it’s difficult to tell if the tiles you edit aren’t going to be
used elsewhere and create a mess.

Page 20 of 28

You can see some of the finalized images underneath the selected tileset and
palette. They appear as .NSCR files, such as “BgMain_dm100.NSCR”, which
when selected will combine the tileset and palette files into this formation:

Which, as you can see, is the chapter
introduction screen for the first chapter of
the game. By using tilesets in this fashion,
every single chapter introduction screen in
the game can be created using
“arrangement data” rather than actual
pixels. Each image is made of the same
tileset and palette swap, and so creating a
new image requires a much lower amount
of memory.

Arm9.bin

Arm9.bin is a very large file inside the game’s ROM that includes most of the
programming for the game, but also includes text for item names, item
descriptions, level names and level descriptions. This was a troubling issue
at first because I was unaware that the .bin file contained said text, but it was
soon found and able to be edited like the other cutscene .dat files.

The difference between arm9.bin and the normal cutscenes is that there is
absolutely no room for change in the size of the file. Cutscenes, as we will get
into later, can vary in size from the original and have specific hex codes to
add in extra line breaks etc. However, if arm9.bin differs from its original
size, the game will crash when started.

To circumvent this, sticking to strict limits, making sure that text doesn’t
“overflow” its original byte size, and also adding blank “junk” data, when
necessary, is extremely important. I kept track of the progress of arm9.bin
with an individual section of the progress spreadsheet, as it was such a large
file and took a substantial amount of time to translate.

This was split into 128 sections for the 128 levels of
the main game.

Page 21 of 28

Cutscenes

In Coropata, every 3 levels a new cutscene is shown to us. These scenes
introduce characters, have them communicate and advance the story. For
the purpose of translation, they are the easiest and most forgiving things to
tackle.

The first thing I will do is play the game until the cutscene appears, and as
soon as the “saving” logo is shown at the bottom right of the DS screen, I will
extract the current save file before renaming it to “Script[current scene
number].sav”; From here I can share this file to GitHub for anyone else who
wishes to jump to that point in the game.

The first scene of the game will be script011.dat, with 11 pointing to chapter
1, scene 1. The first thing I’ll do is open up this .dat file in wxMEdit, then
switch to the “script” view instead of the hex.

In the script view, lines of text can easily be copied over into a notepad++
document, which I then save and distribute on GitHub also.

Page 22 of 28

From here, the typical workflow involves
clicking through the cutscene in the emulator,
and translating the Japanese into English!
Everyone has a different preference for how
they do things, but for me I like to duplicate
the file and have both the Japanese and
English versions side by side on the screen.

Coropata’s cutscenes do make it easier for us
by having each line require the player to tap
the screen to progress dialogue. This means
we don’t have to abuse the pause feature of
the emulator and can move along at our own
pace.

There are a few ground rules and important
quirks when working on cutscenes, but
generally they are very flexible. I say this
because the dialogue boxes in these scenes
are actually dynamic and malleable to custom amounts of text, as well as line
numbers.

In general, translators will want to stick to
under 25~ characters or so for each line, and
no more than 4 lines in a single dialogue box.
In theory there can be more characters per
line before it cuts off the screen, but
aesthetically it starts to look a bit rougher as
the edges of the speech bubble clip off of the
screen etc.

Using the hex code “0A”, a new line is formed
in the speech bubble. In the images on this
page, you can see a bubble that was
converted from 2 lines of text to 3.

Page 23 of 28

In terms of consistent style, of course the title will remain the same in every
scene, the “Scene” will increment by one for each cutscene, and we opted to
stick to a “no full stops” punctuation style. What this means is that the use of
“!”, “?”, “…” and “~” to end a sentence are acceptable, but no full stops. This
has two functions, the simplest is that it saves us a valuable bit of space that
isn’t taken up by an unnecessary character, the second is that it feels less
harsh in tone, which we felt matched better with the more playful and aloof
attitude that the game generally has.

The title in each of these scenes also has a character limit; any more than 15
characters will have the ends of it start to become distorted and chopped up.
Some chapters have names longer than 15 characters, like “Himawari’s
Birthday”, so it is important to come up with appropriate abbreviations that
don’t appear too odd. For this example we settled on “Himawari’s B.Day”.

After the scene is done, the completed English script is uploaded to GitHub
in a folder labelled “ENG Script”, and the status of the scene is set to “DRAFT
COMPLETE” on the progress spreadsheet. Once the draft script has been
double checked and, if necessary, amended/cleaned up for visual appeal, we
can reinject it into the games ROM using crystaltile.

Before this can take place, it
needs to be remade as a .dat
file, just like the original script
file was, so I would manually
go through the translated text
and insert it into a duplicate of
the original .dat file in the
correct locations, making
sure to insert any additional
line breaks with the 0A hex
code.

Then, I can take the
modified .dat file and import it
into the location of the original
using crystaltile. From here
it’s as simple as saving the
ROM.

Page 24 of 28

Levels, Items and Descriptions

This is where things start to get tricky in terms of keeping an adequate and
accurate translation which preserves the original meaning of the Japanese,
whilst sticking to very harsh space constraints.

As mentioned before, arm9.bin is the file that contains the data for all the
level titles and their descriptions, as well as the in-game item names and
their descriptions. Due to the way arm9.bin works, we cannot add any
additional line breaks or extra characters without breaking the way the game
functions.

There is a silver lining in the way that Japanese is handled in hex, which is
that one Japanese character of any type (Kana or Kanji), is represented by 2
hex numbers, while English characters are represented by only 1 hex
number. This effectively gives us 2 English characters for every single
Japanese character found in arm9.bin.

There are many situations where an item is labelled with only 2, sometimes
just 1 Japanese character, which often happens with Japanese nouns,
especially if they use kanji. When this happens, it’s time to brainstorm what
the most appropriate solution would be.

For a handful of items, the best course of
action is to abbreviate the name and add
further explanation in the description
underneath, since there’s typically a lot more
space available for use. A good example of
this would be the reflecting mirror item.

The original Japanese used here is

which of course only gives us 2 English
letters of space to translate with. I opted for
just using the abbreviation “LM”, which is
then explained below as a “Lightreflect
Mirror™”, which sticks to our strict spacing
but also gives all of the information to the
player about what this item is and its
function.

The description also had a relatively low
amount of space, but using the trademark
symbol as a tongue-in-cheek method to give it
a product-esque name, it’s possible to convey all the necessary information
in a very cramped form factor.

Page 25 of 28

There are some elements that cannot be done perfectly due to the file’s
nature. For example, the level titles are perfectly spaced and hard coded to
contain the name of the level that the developers originally wrote. This means
that in the English version, if the translated title is shorter in hex size than the
original, we have to fill the space with junk data.

In order to format the titles so that they
appear centred underneath the task number
at the top of the screen, this data had to be
blank spaces, using the hex code “20”. When
in the level itself, the title looks good, is
positioned correctly, and the blank data
allows us to keep the file size. However, a
known issue is that in the stage select
screen, the level titles can appear disjointed
and strange because it actually reads and
displays the blank spaces in a different way.

Of course, we could just start the level titles
from the original starting point, which would
fix the appearance in stage select, but would
make the in-game titles look odd and have
them appear randomly across the topmost
green box. We decided the former method
was more appropriate.

Just like the aforementioned “Lightreflect Mirror” situation, there are also
level titles that are written with so few characters that it makes fitting English
words into the small space very impractical. For these cases, the closest
possible approximation has been used to convey the same or similar
meaning, whilst staying within the sizing limit. As a result, some of the level
titles might seem a tad uninspired compared to their original Japanese
counterparts, but without a major change in the games code, this isn’t
something that can be helped.

Also of note is that the general line limit for arm9.bin, since everything is
contained within the top screen, is around 27-28 characters before it starts
to become cut off. It does allow for more room per line than the cutscenes,
but we cannot add any new lines should the space run out. Formatting is an
issue here since lines are not dynamically word-wrapped like in dialogue
boxes, so workshopping of each line has to be done to make sure it doesn’t
have any large and obvious gaps.

Page 26 of 28

Stylistic Choices

As mentioned before, we chose an approach for grammar that seemed more
light-hearted, in order to fit the cheerful attitude of the game; Sentences can
end in “!”, “~”, “…” and “?”, but periods are not used to end a sentence.

There are a few other decisions relating to character naming, honorifics, etc,
that I will detail here.

Honorifics/Name nomenclature
Coropata, and many other Japanese games,
use honorifics common to Japanese speech,
including -san, -chan, -kun, -tan when a
character is referring to other people. There
are a few different ways to approach
translating these; Some opt to convert them
into nicknames or alter the way that the rest
of the sentence feels in order to reflect said
suffixes. Other translations will leave the
suffixes untouched, which can work but does
presume that the audience understands the
suffix conventions of the Japanese language.

For Coropata, we chose the simplest path of
just omitting the suffixes; It doesn’t alter the
rest of the content of the sentence and
handily saves us space for other, more
important elements of text.

Oscar/Geotail
Oscar and Geotail refer to the cat and dog
characters that Himawari regularly interacts
with. The original names for these two are “Fuji-2-
gou” and “Jiote-ru” respectively. These might
seem like odd choices for animal names at first,
but they are actually references to two different
Japanese space satellites.

Geotail’s name was left as-is, since it closely resembles
a “normal” name, with the “tail” part feeling somewhat
related to household pets. Fuji-2-gou feels a lot more
alien when directly translated, so we opted for the
original satellite’s alternative name: Oscar.

Page 27 of 28

Geotail’s speech
Geotail is a dog that doesn’t have the ability to speak to humans, and
therefore his dialogue is reduced to various onomatopoeia that represent
dog barks, pants, whimpers etc. We tried our best to use sounds that would
be instantly recognized in text form, such as “Arf!” for barking noises, but
resorted to the old-fashioned method of using asterisks to represent sound
effects in place of his whimpering.

For these scenarios, the phrase “*whimper*”
is used, simply because any other
onomatopoeia felt like they could cause
confused or uncertainty in the type of sound
that was being expressed; something that
wasn’t ambiguous in the original Japanese.

Hinotori

During the course of the entire game, there is a running joke that Hinotori
tries to guess the underwear colour of any girl he talks to, in order to really
drive home that he’s a perverted old man.

When translated into English, and given the
age of some of the characters he does this to,
including Himawari herself, it seems
unnecessarily inappropriate. Hinotori has
plenty of opportunities to get across the point
that he is a bit of a pervert, but I think this one
in particular is seen as appropriate in the
Japanese idol culture space; something that
doesn’t really have a direct parallel in the
English-speaking world.

As a result, we’ve felt that it isn’t needed in the game and doesn’t really add
to the character of Hinotori in a necessary way, so we’ve opted to remove
this running joke for the English audience. There are still plenty of ways in
which Hinotori’s character is shown as gross and creepy, just not this one in
particular.

Page 28 of 28

Post Translation

Finally, after translating all of the levels, items, cutscenes and images; After
compiling the ROM into a fully English version, we can use xDelta to create a
patch.

After almost an entire year in development, with me and my friends working
together as Demon Network to get this patch finished, we’ve finally done it!

I’ve done some bug tests and a few updates to the patch to amend a few
word wrap issues, but with patch v1.2 I think everything is up to snuff. The
patch has been tested and works on the following physical hardware:
Original DS, DS lite, DS LL, DSi, DSi LL and 3DS.

The next steps going forward are to distribute the patch on romhacking
websites, and then the demon network site (demonnetwork.co.uk), and
finally my own personal website (kendalls.garden).

I’d like to thank everyone at Demon Network for their dedication and hard
work over the year; it’s a really rewarding feeling seeing something you’ve
put so much time and energy into finally come to fruition and be realized as
something tangible.

Reflection

This project isn’t the first translation patch I’ve done, but it is the first time
I’ve created and been at the helm of a team. It’s the first time that I’ve had
this much input into the extremely technical side of things that fall outside the
realm of translation, but I’ve gained a lot of useful knowledge about
programs used in the deconstruction of DS ROMs, and going forward feel
much more confident with similar projects.

Something that would’ve been useful is a much deeper knowledge of a
coding language for creating macro scripts. I used to study java in school
and enjoyed it very much, but have since forgotten a lot of the framework
that would’ve helped me a lot when it came to the slow and tedious parts
behind the scenes.

A lot of the time, I would be manually copying and pasting lines of text in
order to create shareable files for the rest of the team, but being able to code
my own program that would automate this program would’ve been very
helpful. Still, given the circumstances I think we did the best we could.

